Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0280650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928510

RESUMO

Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal ß-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/- mouse model failed to display abnormal phenotype. Recently, our group generated Hexa-/-Neu3-/- mouse showed severe neuropathological indications similar to Tay-Sachs patients. Despite excessive GM2 ganglioside accumulation in the brain and visceral organs, the regulation of autophagy has not been clarified yet in the Tay-Sachs disease mouse model. Therefore, we investigated distinct steps of autophagic flux using markers including LC3 and p62 in four different brain regions from the Hexa-/-Neu3-/- mice model of Tay-Sachs disease. Our data revealed accumulated autophagosomes and autophagolysosomes indicating impairment in autophagic flux in the brain. We suggest that autophagy might be a new therapeutic target for the treatment of devastating Tay-Sachs disease.


Assuntos
Autofagia , Doença de Tay-Sachs , Animais , Camundongos , Autofagia/fisiologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Gangliosídeo G(M2)/uso terapêutico , Hexosaminidase A/metabolismo , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/patologia , Modelos Animais de Doenças
2.
J Neuroinflammation ; 17(1): 277, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32951593

RESUMO

BACKGROUND: Tay-Sachs disease (TSD), a type of GM2-gangliosidosis, is a progressive neurodegenerative lysosomal storage disorder caused by mutations in the α subunit of the lysosomal ß-hexosaminidase enzyme. This disease is characterized by excessive accumulation of GM2 ganglioside, predominantly in the central nervous system. Although Tay-Sachs patients appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to death. Recently, an early onset Tay-Sachs disease mouse model, with genotype Hexa-/-Neu3-/-, was generated. Progressive accumulation of GM2 led to premature death of the double KO mice. Importantly, this double-deficient mouse model displays typical features of Tay-Sachs patients, such as cytoplasmic vacuolization of nerve cells, deterioration of Purkinje cells, neuronal death, deceleration in movement, ataxia, and tremors. GM2-gangliosidosis is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage, and astrocyte activation, along with the production of inflammatory mediators. However, the mechanism of disease progression in Hexa-/-Neu3-/- mice, relevant to neuroinflammation is poorly understood. METHOD: In this study, we investigated the onset and progression of neuroinflammatory changes in the cortex, cerebellum, and retina of Hexa-/-Neu3-/- mice and control littermates by using a combination of molecular genetics and immunochemical procedures. RESULTS: We found elevated levels of pro-inflammatory cytokine and chemokine transcripts, such as Ccl2, Ccl3, Ccl4, and Cxcl10 and also extensive microglial and astrocyte activation and proliferation, accompanied by peripheral blood mononuclear cell infiltration in the vicinity of neurons and oligodendrocytes. Behavioral tests demonstrated a high level of anxiety, and age-dependent loss in both spatial learning and fear memory in Hexa-/-Neu3-/- mice compared with that in the controls. CONCLUSION: Altogether, our data suggest that Hexa-/-Neu3-/- mice display a phenotype similar to Tay-Sachs patients suffering from chronic neuroinflammation triggered by GM2 accumulation. Furthermore, our work contributes to better understanding of the neuropathology in a mouse model of early onset Tay-Sachs disease.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Gangliosídeo G(M2)/metabolismo , Mediadores da Inflamação/metabolismo , Retina/metabolismo , Doença de Tay-Sachs/metabolismo , Animais , Encéfalo/patologia , Gangliosídeo G(M2)/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Retina/patologia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/patologia
3.
Exp Neurol ; 299(Pt A): 26-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974375

RESUMO

Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal ß-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa-/- mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by ß-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa-/-Neu3-/- mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa-/-Neu3-/- mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa-/-Neu3-/- mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa-/-Neu3-/- mice. Thus, the Hexa-/-Neu3-/- mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition.


Assuntos
Gangliosidoses GM2/genética , Hexosaminidase B/genética , Neuraminidase/genética , Doença de Tay-Sachs/genética , Animais , Química Encefálica/genética , Vesículas Citoplasmáticas/patologia , Gangliosidoses GM2/metabolismo , Gliose/genética , Gliose/patologia , Glicoesfingolipídeos/metabolismo , Coxeadura Animal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuraminidase/deficiência , Neurônios/patologia , Células de Purkinje/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Doença de Tay-Sachs/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...